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Abstract
A numerical method is presented for exploring the intertwined roles of the
control-field structure and the final time T in determining the unitary evolution
operator U(T , 0) for finite-level quantum control systems. The algorithm can
(a) identify controls achieving a target unitary operator W at time T up to
machine precision and (b) identify a continuous family of controls producing
the same operator W over a continuous interval of final times. The high degree
of precision is obtained, in part, by exploiting the geometry of the unitary group.
In particular, geodesics of the unitary group are followed, both for tracking to
a target transformation and for error management.

PACS numbers: 32.80.Qk, 02.30.Zz, 03.67−a

1. Introduction

A fundamental concern in the control of quantum systems is the degree of exhibited control.
This paper considers finite N-level systems with Hamiltonians of the form

H(t) = H0 − µE(t), (1)

typically represented in the basis of the eigenstates of the field-free Hamiltonian H0, so that H0

is real diagonal, and the dipole µ is Hermitian. The theory of controllability of right-invariant
affine systems on Lie groups, developed in [1], and applied to finite-level quantum systems
in [2], allows for assessing the controllability of such quantum systems by analyzing only the
dimension of the Lie algebra A generated by the skew-Hermitian matrices iH0 and iµ under
matrix commutation. These fundamental controllability results state that if A is the entire
space of N × N skew-Hermitian matrices u(N), then for any W ∈ U(N) (the N × N unitary
group), there exists a control E and a final time T such that the unitary propagator U(t, 0)

evolves to W at T under this control (where U(t, t0) denotes the unitary propagator from time
t0 to time t). In addition, [1] reveals that, if the system is controllable and the Hamiltonian
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traceless (so that the propagator is restricted to the special unitary group SU(N)), then there
exists a T̂ > 0 such that for any T � T̂ , and any W ∈ SU(N), there exists a control such
that U(T , 0) = W . The role of T in quantum control has also been explored in more recent
investigations [3–10] into time-optimal control, where the smallest time T is sought at which
a given target unitary operator W may be attained.

This paper introduces a numerical method, denoted unitary D-MORPH, that explores the
relationship between the control field, the final time T and the resulting unitary propagator
U(T , 0). Unitary D-MORPH is a variation of the original D-MORPH (diffeomorphic
modulation under observable-response-preserving homotopy) method, presented in [11–13],
that considered the relationship between the control field and the transition probability Pi→f .
Unitary D-MORPH numerically inverts the control-field �→ unitary-propagator map to find a
path through control-field space that corresponds to given tracks for T and U(T , 0) through
R+ and U(N), respectively. We find that unitary D-MORPH is able to identify controls that
produce a target unitary transformation at a sufficiently large time T with remarkably high
accuracy (<10−13 for 2-qubit systems). In addition, the algorithm can identify a continuous
family of controls producing the same operator W over a continuous interval of final times.
Beyond these two particular applications examined in the present work, the unitary D-MORPH
formulation may be configured to address other questions in quantum control. For example,
it can be configured to explore a given level set (the set of all controls that produce some fixed
unitary transformation W at some fixed time T) by sending continuous trajectories along it in
analogy with previous work [13].

The remainder of the paper is organized as follows. Section 2 breaks down the nonlinear
inverse problem into an iterative sequence of underdetermined linear inverse problems.
Section 3 describes some aspects of the geometry of level sets within the space of control fields
and places unitary D-MORPH within this geometric context. Section 4 derives the space of
all solutions to the linear inverse problem in the case where the Hamiltonian is of the form (1),
and H0 and µ satisfy the Lie algebra rank condition for controllability. Section 5 describes
the application of this algorithm to the control problems outlined above. Section 6 discusses
possible ways of taking advantage of the underdetermined nature (and hence multiplicity of
solutions) of the linear inverse problem to optimize properties of the solution. Some details
of the numerical implementation of this method are considered in section 7, and section 8
presents numerical results related to these applications. Finally, section 9 summarizes the
work and suggests further extensions and applications of the unitary D-MORPH algorithm.

2. General formulation

Let K denote the space of admissible control functions, taken to be the linear subspace of
locally bounded functions within L2(R+; R). Let M(N) be the space of N × N Hermitian
matrices, H the subspace of locally bounded maps within L2(R+; M(N)), and Ĥ : K → H

the differentiable map that assigns a time-dependent Hamiltonian to each control function.
We will consider C

N×N to be a real Hilbert space with the real Hilbert–Schmidt inner product
〈A,B〉 = Re Tr(A†B). This inner product then induces an inner product on M(N) as well as
a Riemannian metric on U(N) that will be the conventions adopted herein.

Denote by V : K × R+ → U(N) the time-dependent input-state map of the quantum
control system; i.e. V (E, t) = U(t, 0)[E] is the unitary time-evolution operator for the
Schrödinger equation with Hamiltonian Ĥ(E), evaluated at time t. For simplicity, we will
also use the notation Vt : K → U(N) and VE : R+ → U(N) for the map V with fixed t and E ,
respectively. Similarly, we will use Ht (E) = H(t, E) = Ĥ(E)(t) to denote the Hamiltonian
for control E , evaluated at time t.

2



J. Phys. A: Math. Theor. 41 (2008) 205305 J Dominy and H Rabitz

× +

V

[0,  σ]

(Ẽ ,T)

Q
U(n)

Figure 1. Commutative diagram relating V , the tracks Q and T, and the solution Ẽ .

Suppose for some σ > 0 that Q : [0, σ ] → U(N) and T : [0, σ ] → R+ are defined
differentiable tracks (possibly constant maps) for U(T , 0) and T, respectively. Then we may
seek a path Ẽ : [0, σ ] → K such that

V (Ẽ(s), T (s)) = Q(s) (2)

for all s ∈ [0, σ ], a relationship summarized in the commutative diagram in figure 1. This
will be referred to as the global nonlinear inverse problem. Unitary D-MORPH seeks to solve
this problem through a sequential linearization scheme. As shown in appendix A, VT is a C∞

map on K for each fixed T > 0. Differentiating (2) gives

dẼ(s)VT (s)

(
dẼ
ds

)
+

dVẼ(s)

dt
(T (s))

dT

ds
= dQ

ds
, (3)

where dEVt : K → TVt (E)U(N) is the differential of Vt at E ∈ K. Here and elsewhere in
this paper, TxX denotes the tangent space to the manifold X at the point x ∈ X. So, if we
have some E0 ∈ K such that V (E0, T (0)) = Q(0), then the solution Ẽ to (2) is the integral of
the initial value problem dẼ

ds
= δẼ(s) where, for each s ∈ [0, σ ], δẼ(s) is any solution of the

underdetermined linear inverse problem

dẼ(s)VT (s)(δẼ(s)) = Q′(s) − T ′(s)
dVẼ(s)

dt
(T (s)), (4)

referred to henceforth as the local linear inverse problem.
To solve the local linear inverse problem, we need to determine expressions for the

derivatives dVE/dt and dEVT . The expression for dVE/dt may be obtained directly from the
Schrödinger equation

dVE

dt
(T ) = dU(t, 0)

dt

∣∣∣∣
t=T

= − i

h̄
H(T , E)U(T , 0) = − i

h̄
H(T , E)VE(T ). (5)

With some analysis, it may be shown (see appendix A) that VT is Fréchet differentiable with
respect to the control field and that the differential is given by

dEVT (δE) = − i

h̄
VT (E)

∫ T

0
V

†
t (E) dEĤ(δE)(t)Vt (E) dt. (6)

Note that since Q(s) defines a differentiable curve through U(N), this curve may be
specified by a Schrödinger-like initial value problem in s

dQ

ds
(s) = iQ(s)B(s), (7)

where B : [0, σ ] → M(N) fills the role of the ‘Hamiltonian’, and Q(0) = V (E(·, 0), T (0))

is given; specifying B(·) in turn yields a track Q(·). With equations (5)–(7), we may now
rewrite the linear inverse problem of (4) as

−
∫ T

0
V

†
t (Ẽ(s)) dẼ(s)Ĥ

(
dẼ
ds

)
(t)Vt (Ẽ(s)) dt = dT

ds
(s)V

†
T (Ẽ(s))H(T , Ẽ(s))VT (Ẽ(s)) + h̄B(s).

(8)
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Note that these equations may not have a solution for dT/ds �= 0 or B(s) �= 0. One way to
formally guarantee a solution is to assume that dEVT is surjective for all E ∈ K and all T ∈ R+.
This is equivalent to the claim in several quantum control landscape papers (e.g. [14]) that the
input-state map VT is a submersion (i.e. has no critical points). Such an assumption is not
necessary, however, to make use of the unitary D-MORPH algorithm, as will be discussed in
the following section. Note also that, while this framework allows us to observe the response
to a steadily decreasing T, these regularity requirements on VT almost certainly prevent it from
approaching the optimal time for a given target W . As a consequence, D-MORPH is likely
not an effective tool for finding time-optimal controls.

3. Level sets: the geometry of D-MORPH

For a fixed W ∈ U(N) and a fixed T > 0, we denote by �W,T the level set (or fiber) of W at T,

�W,T = V −1
T (W) = {E ∈ K : VT (E) = W }. (9)

For a given control E ∈ K, the level set containing E may also be denoted by

�E,T = V −1
T (VT (E)) = {Ê ∈ K : VT (Ê) = VT (E)}. (10)

When the tracks T (s) and Q(s) are constant maps, the right-hand side of equation (8) is
zero, and the control function ‘curve’ E(·, s) := Ẽ(s) is confined to the level set �E(·,0),T .
These level sets exist in an infinite-dimensional space, and are not easy to visualize. However,
the local submersion theorem [15] reveals that in a neighborhood of a regular point E of VT

(the only regions where D-MORPH may be applied), the level set containing E,�E,T , is a
codimension N2 submanifold of K. As the tracks Q(s) and T (s) vary smoothly with s, the
corresponding level set �Q(s),T (s) will also vary smoothly away from critical points. From this
perspective, it is helpful to picture D-MORPH geometrically, as an algorithm defining a path
through K that stays on the correct level set as that level set evolves with the parameter s.

From this picture the critical points evidently pose a hazard while implementing D-
MORPH. As the algorithm evolves over s, the appearance of critical points in �Q(s),T (s)

can herald topological changes in the level set. These changes may include disconnected
components being pinched off, merged, disappearing entirely, or emerging. Fortunately
however, such behavior seems rare in practice, and in some cases may be avoided in a
subsequent run by changing aspects of the track being followed. In addition, although such
events will effectively terminate a D-MORPH run, they may help to reveal important control
landscape topological information.

4. The algorithm in the dipole approximation

For the analysis that follows, let {�j }j=1,...,N2 be any basis for M(N) (the space of N × N

Hermitian matrices, endowed with the Hilbert–Schmidt inner product). For the numerical
examples presented herein, we use the particular orthogonal basis of matrices of the form
|q〉〈q|, (1/2)(|j 〉〈k| + |k〉〈j |) or (i/2)(|j 〉〈k| − |k〉〈j |) for 1 � q � N and 1 � j <

k � N . In addition, let ν : M(N) → R
N2

and νj : M(N) → R be maps νj (A) := (ν(A))j =
Tr(A�j) = 〈A,�j 〉 that ‘vectorize’ a Hermitian matrix A with respect to the chosen basis
{�j }.

Let Ĥ(E) = H0 − µE for some fixed H0 and µ. Then dEĤ(δE) = −µδE , so that the
left-hand side of (8) becomes

4



J. Phys. A: Math. Theor. 41 (2008) 205305 J Dominy and H Rabitz

−
∫ T

0
U †(t, 0) dEĤ (δE) (t)U(t, 0) dt =

∫ T

0
U †(t, 0)µU(t, 0)δE(t) =

∫ T

0
µ(t)δE(t) dt,

(11)

where µ(t) = U †(t, 0)µU(t, 0). Since the algorithm consists of solving a sequence of
linear problems—each at a fixed s—we have adopted the notational convention of leaving the
s-dependence implicit.

If we define αE,T : R × M(N) → R
N2

by

αE,T (δT , B) = δT ν
(
V

†
T (E)H(T , E)VT (E)

)
+ h̄ν(B), (12)

then (8) can be written∫ T

0
ν(µ(t))δE(t) dt = αE,T (δT , B), (13)

which is equivalent to the system of equations

〈ωE,T ,j , δE〉K = αE,T ,j (δT , B) ∀j = 1, . . . , N2, (14)

where ωE,T ,j : R+ → R is given by

ωE,T ,j (t) =
{

νj (µ(t)) = Tr(U †(t, 0)µU(t, 0)�j ), t ∈ [0, T ],

0, else,
(15)

or equivalently ωE,T ,j = h̄(dEVT )∗(iV (E, T )�j ), where (dEVT )∗ denotes the adjoint operator
of the differential, and {iV (E, T )�j } is a basis for TV (E,T )U(N).

Since this is a linear inverse problem, it may be solved by finding the set of all solutions
to the homogeneous problem and one particular solution to the inhomogeneous problem. The
space of solutions δE to the homogeneous problem

〈ωE,T ,j , δE〉K = 0 ∀ j = 1, . . . , N2, (16)

is the linear subspace of K which is the orthogonal complement of the span of {ωE,T ,j }.
Assuming that the functions {ωE,T ,j } are linearly independent, this space of solutions will
have codimension N2 within the infinite-dimensional space K. We can define the Gram (or
overlap) matrix

(SE,T )i,j = 〈ωE,T ,i , ωE,T ,j 〉K =
∫ ∞

0
ωE,T ,i (t)ωE,T ,j (t) dt =

∫ T

0
ωE,T ,i (t)ωE,T ,j (t) dt (17)

and the map pE,T : K → R
N2

by

(pE,T (f ))i = 〈ωE,T ,i , f 〉K =
∫ ∞

0
ωE,T ,i (t)f (t) dt =

∫ T

0
ωE,T ,i (t)f (t) dt. (18)

It may be observed that ωE,T , pE,T and SE,T are representations of (dEVT )∗, dEVT and
(dEVT ) ◦ (dEVT )∗, respectively, all relative to the basis {iV (E, T )�j } of TV (E,T )U(N). The
space of solutions to the homogeneous problem can then be described by projecting K into
the desired subspace

NE,T = {
δE = f − ωT

E,T S−1
E,T pE,T (f ) : f ∈ K

}
. (19)

The inhomogeneous problem admits the particular solution δE = ωT
E,T S

−1
E,T αE,T (δT , B).

Hence, the full set of solutions to the inhomogeneous problem of (8) is given by

ME,T (δT , B) = {
δE = f + ωT

E,T S−1
E,T (αE,T (δT , B) − pE,T (f )) : f ∈ K

}
. (20)

Returning finally to the global nonlinear inverse problem, assume that Q : [0, σ ] → U(N)

and T : [0, σ ] → R+ are defined differentiable tracks (possibly constant maps) for U(T , 0)

5
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and T, respectively. Assume further that H(·, E(·, 0)) := H0 − µE(·, 0) is a Hamiltonian that
integrates to Q(0) at time T (0) (i.e. V (E(·, 0), T (0)) = Q(0)). We may then solve for E(·, s)
by integrating

d

ds
E(·, s) = δẼ(s) ∈ ME(·,s),T (s)

(
dT

ds
, B(s)

)
, (21)

where, for each s ∈ [0, σ ], δẼ(s) may be chosen to be any tangent vector within the
codimension N2 (hence infinite dimensional) space of possibilities: ME(·,s),T (s) (dT/ds, B(s)),
making (21) a set-valued differential equation or differential inclusion. The multiplicity of
possible solutions implied by this equation will be exploited in section 6.

4.1. Operation on SU(N)

If Tr(µ) = Tr(H0) = 0, then the image of V is contained entirely within SU(N), and
the D-MORPH formulation presented above will fail because SH,T is singular everywhere.
However the formulation may be modified slightly in this circumstance to allow it to function
properly. We need to simply replace the chosen basis for M(N), {�j }, with a basis for the
traceless Hermitian matrices {�̂j }. For example, one could use the matrices of the form
|q〉〈q| − (1/N)I, (1/2)(|j 〉〈k| + |k〉〈j |) or (i/2)(|j 〉〈k| − |k〉〈j |) for 1 � q � N − 1 and
1 � j < k � N . This leaves a set of N2 − 1 elements {�̂j }, forming a basis for the space of
traceless Hermitian N × N matrices. We may then define ω̂E,T ,j = h̄(dEVT )∗(iV (E, T )�̂j ),
as well as the corresponding ŜE,T and p̂E,T to get the full set of local solutions

M̂E,T (δT , B) = {
δE = f + ω̂T

E,T Ŝ−1
E,T (αE,T (δT , B) − p̂E,T (f )) : f ∈ K

}
(22)

for B traceless and Hermitian.

5. Theoretical applications

In this section, two distinct means of configuring the tracks T (s) and B(s) are considered,
each leading to a different application of unitary D-MORPH to problems in quantum
control. Concrete numerical simulations for each of these configurations will be discussed in
section 8.

5.1. The reachable time set

For any given system (H0, µ) and final time T > 0, let A(I, T ) = Range(VT ) ⊂ U(N) denote
the set of all N × N unitary evolution operators that may be attained at time T. Then, for any
W ∈ U(N), let R(W) = {T ∈ R+ : W ∈ A(I, T )} denote the set of all final times at which W

may be attained. If the system is controllable, then for any W ∈ U(N), R(W) is non-empty.
If T ∈ R(W) and there exists a control E such that VT (E) = W and E is a regular point of VT ,
then according to the D-MORPH formalism, T is an interior point of R(W). Starting from a
control field and time T that produce W , if SE,T is invertible at this point, then other nearby
times and control fields may be found using unitary D-MORPH that also produce W . This is
done by taking B = 0 and δT = dT/ds �= 0 in (20).

5.2. Tracking to a given W ∈ U(N) along a geodesic

Suppose we have an initial electric field E(t, 0) and define U0 ∈ U(N) by U0 := VT (Ẽ(0)) (i.e.,
U0 is U(T , 0) for the Hamiltonian H(t) = H0 −µE(t, 0)). Let A = −(i/σ) log

(
U

†
0W

)
where

σ > 0 and the matrix logarithm is defined as follows. If the Hamiltonian has nonzero trace

6
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and the dynamics range over U(N), this matrix logarithm is defined by choosing log
(
U

†
0W

)
from the principal branch, i.e. all eigenvalues of log

(
U

†
0W

)
must lie in (−iπ, iπ ]. However,

if the Hamiltonian is traceless, then A must also be made traceless. The trace of log
(
U

†
0W

)
is always equal to 2iπk for some integer k between −N/2 and N/2. If k is positive, we
subtract 2iπ from each of the k largest eigenvalues of log

(
U

†
0W

)
. If k is negative, we add 2iπ

to each of the k smallest eigenvalues. Then it may be shown [16] that Q : [0, σ ] → U(N)

given by Q(s) = U0 exp(iAs) describes a minimal geodesic from U0 to W . For B(s) defined
by iQ(s)B(s) := (dQ/ds) = iQ(s)A, we find that B(s) = A describes this path. With this
choice of B(s), U(T , 0; s) hits W exactly at s = σ (and will continue past it if the simulation is
not stopped), rather than approaching W asymptotically as can happen with other optimization
schemes. This method clearly produces the shortest, straightest path from U0 to W . However,
because of the complexity in the dynamical evolution, the corresponding path E(·, s) may be
highly convoluted.

6. Making choices among the multiplicity of solutions

Because of the strongly underdetermined nature of the posed nonlinear inverse problem, the
local linear inverse problem is likewise underdetermined, leading to a continuum of local
solutions as seen in (20). As a consequence, the original nonlinear inverse problem also has
a continuum of possible solutions. In this section we consider ways to take advantage of
the infinite dimension of the space of local solutions to choose members that exhibit certain
favorable qualities, leading toward an optimal value of some prescribed functional. Since all
of the local solutions identified in (20) solve the problem exactly, the additional qualities may
be gained without compromise.

Suppose that J : K → R is some differentiable functional expressing a property of
the solution control function that is advantageous to either maximize or minimize. In the
homogeneous case where the tracks Q(s) and T (s) are constant maps, the control-field curve
E(·, s) lies entirely within the level set �E(·,0),T . Let J0 : �E(·,0),T → R be the restriction
of J to this level set, and since critical points are undesirable within unitary D-MORPH, we
assume that E(·, s) is a regular point of VT for every s ∈ [0, σ ], so that �E(·,0),T is locally
a codimension N2 submanifold near each E(·, s). Recall that the gradient of J at E(·, s) is
the unique element ∇J (E(·, s)) of TE(·,s)K such that 〈∇J (E(·, s)), δE(·)〉 = dE(·,s)J (δE) for
all δE ∈ TE(·,s)K. Likewise, the gradient of J0 at E(·, s) is the unique element ∇J0(E(·, s))
of TE(·,s)�E(·,0),T such that 〈∇J0(E(·, s)), δE〉 = dE(·,s)J0(δE) for all δE ∈ TE(·,s)�E(·,0),T .
Now, if δE ∈ TE(·,s)�E(·,0),T ⊂ TE(·,s)K is tangent to �E(·,0),T at E(·, s), then dE(·,s)J0(δE) =
dE(·,s)J (δE). Hence, 〈∇J0(E(·, s)), δE〉 = 〈∇J0(E(·, s)), δE〉 for all δE ∈ TE(·,s)�E(·,0),T .
Since ∇J0 ∈ TE(·,s)�E(·,0),T , this implies that ∇J0 is the projection of ∇J into TE(·,s)�E(·,0),T .
With the machinery already developed, this can be written

∇J0(E) = ∇J (E) − ωT
E,T S−1

E,T pE,T (∇J (E)) (23)

which, in this homogeneous case, is a valid solution to the local inverse problem. Within the
space of all possible solutions, ∇J0(E) is the one that points in the direction of steepest ascent
of J . So if we use ∇J as the free function in D-MORPH, E(·, s) will follow the gradient flow
of J0 on �E(·,0),T .

In the inhomogeneous case (i.e., where one or both of B(s) and dT/ds(s) are nonzero)
the situation is less straightforward. Let g = ωT

E,T S
−1
E,T αE,T (δT , B), so that for any

λ ∈ R, δE = λ∇J0(E) + g is a valid solution to the local inverse problem. If dEJ (g) � 0,
then choosing ∇J (E) as the free function will cause the value of J to never decrease. If
dEJ (g) < 0 and ‖∇J0(E)‖ = 0, then every δE ∈ ME,T (δT , B) is a direction that decreases

7
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J . On the other hand, if dEJ (g) < 0 and ‖∇J0(E)‖ > 0, then choosing λ > 0 large enough
will result in a δE that increases J . However, this may produce a very large δE (i.e., one with
large norm), which is likely to be undesirable from a numerical standpoint. So, considering
both analytic and numerical viewpoints, the use of ∇J (E) (without any local scaling term λ)
as the free function appears to be the most practical choice for maximizing a functional J
over the course of the D-MORPH run.

One of the simplest and most useful applications of the concept above is to minimize the
fluence

JF,T (E) =
∫ T

0
E2(t)W(t) dt (24)

whereW : R+ → R+ is some arbitrary weight function. Then the gradient is just the functional
derivative

δJF,T

δE(t)
=

{
2E(t)W(t) t ∈ [0, T ]
0 else.

(25)

Minimizing the fluence with the free function f (t) = −δJF,T /δE(t) helps to ‘regularize’ the
control field. Also, the fluence minimized fields tend to be much easier to interpret physically
as nonessential intensity features in the control field are removed.

7. Numerical considerations

7.1. Error management through tracking

Recall that Q : R+ → U(N) represents the desired unitary track specified by B(·). Suppose
that at some sk, U(T , 0; sk) �= Q(sk). Then we could introduce a correction in the track that
would attempt to reduce this error at sk+1. Since B(sk) already is the approximate track to
get from Q(sk) to Q(sk+1), the correction C(sk) should only attempt to track from U(T , 0; sk)

back to Q(sk). Then B(sk) + C(sk) will be an approximate track to get from U(T , 0; sk) to
Q(sk+1). In particular, if B ≡ 0 (so that Q is fixed), then C(sk) will define a track back to Q.

Let G : [0, sk+1 − sk] → U(N) be the minimal geodesic from U(T , 0; sk) (the actual
computed solution at sk) to Q(sk) (the desired solution at sk) in an interval of length

sk = sk+1 − sk . Then G(r) = U(T , 0; sk) exp(irC(sk)), where C(sk) = −(i/
sk) log
(U †(T , 0; sk)Q(sk)) and the matrix logarithm should be defined as in section 5.2. Letting
γ = ν(C(sk)), we can incorporate this correction as

δE(t) = f (t) + ωT
E,T S−1

E,T (αE,T (δT , B) + γ − pE,T (f )). (26)

7.2. Combined tracking and error correction

Better accuracy may be achieved if we eliminate this dual approach to tracking and error
correction, and simply define a track B(sk) to get from U(T , 0; sk) (the actual computed
solution at sk) to Q(sk+1) (the desired solution at sk+1) in one s-step. Then in analogy with the
error correction derivation, we define

B(sk) = − i

sk+1 − sk

log(U †(T , 0; sk)Q(sk+1)), (27)

and

δE(t) = f (t) + ωT
E,T S−1

E,T (αE,T (δT , B(sk)) − pE,T (f )). (28)

Due to lack of commutativity in U(N), the αE,T (δT , B(sk)) term from (28) is close, but not
identical, to αE,T (δT , B) + γ from (26).
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7.3. Additional correction steps

In situations where very high accuracy is desired, the on-the-fly error correction described in
the previous two sections may be insufficient. Orders of magnitude of additional accuracy
may be obtained by introducing dedicated error correction steps between the standard ‘s’
steps. Suppose that at some sk , the algorithm has evolved the Hamiltonian to H(·, sk)

which produces U(T , 0; sk), but the desired unitary solution is Q(sk). Then defining again
C = −i log(U †(T , 0; sk)Q(sk)), and γ = ν(C), we can perturb the control field by

δE = ωT
E,T S−1

E,T γ. (29)

It has been found empirically that ten such steps are sufficient to reduce the Hilbert–Schmidt
norm ‖U(T , 0; sk)−Q(sk)‖ from ∼10−4 to ∼10−14 for 2-qubit systems (i.e., down to machine
precision). The high quality of unitary D-MORPH performance may be attributed to the fact
that the geometry of the unitary group has been built into the algorithm, especially through
the use of geodesic curves such as are employed in these correction steps.

7.4. Remeshing time

When the track T (s) is non-constant, it typically becomes necessary to redefine the time vector
and the control-field vector after each s-step. During these events, both the values of the tk’s as
well as the number of such time points may change. Extra time points may be added to keep
the spacing 
t = tk+1 − tk from growing too much when T increases, or to provide additional
resolution as the control field E(t) grows either in intensity or in high-frequency structure so
as to maintain control over the error in the integration of the Hamiltonian. Once the new time
vector has been specified, the control field may be recreated using spline interpolation (and
extrapolation when T is increasing).

7.5. Time mesh scaling

In addition to the 2-qubit simulations presented in the following section, a small number of 3-
and 4-qubit simulations were performed. It was found that larger systems require much larger
time meshes, and therefore much more memory and computational time. Numerically, we
can only work with controls in K that are well approximated by piecewise constant functions
with a modest number of ‘pieces’. For small systems, this set of controls appears sufficient
for controllability. However, because of the greater numbers of internal degrees of freedom in
larger systems, this set of ‘numerically nice’ controls quickly becomes insufficient for complete
unitary controllability as the system size increases. In particular, the greater numbers of natural
frequencies in these larger systems necessitate finer time meshes to resolve higher frequencies
and larger T to resolve smaller differences between the frequencies. Consequently, we believe
this time mesh scaling behavior is due to the nature of the control landscape itself, and is
largely independent of the algorithm employed in exploration.

8. Numerical examples

8.1. Variable final time example

8.1.1. CNOT gate. In this example, we consider the four-level (2-qubit) system [17]

9
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Figure 2. Results of continuously varying T for a 2-qubit system, while holding U(T , 0; s) =
CNOT to high precision. Panel (a) shows the initial field E0 which yields CNOT at T = 121.05.
Panel (b) shows the error as T is decreased as well as increased from 121.05 (indicated with an
arrow). Panel (c) is the control field at T (s) = 101.7706, just before the error began increasing.
Panel (d) is the control field for T (s) = 245.55.

H0 = 1

2

⎡
⎢⎢⎣

ω1 + ω2 − 1
2γ 0 0 0

0 ω1 − ω2 + 1
2γ −γ 0

0 −γ ω2 − ω1 + 1
2γ 0

0 0 0 −ω1 − ω2 − 1
2γ

⎤
⎥⎥⎦

µ = 1

2

⎡
⎢⎢⎣

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤
⎥⎥⎦ , (30)

where ω1 = 1 and ω2 = π − 2.05 ≈ 1.0926 are the transition angular frequencies for the two
qubits, and γ = 0.1 is the Heisenberg exchange interaction coupling constant between them.
We wish to address the problem of generating the controlled NOT (CNOT) gate

W := exp

(
i
5π

4

) ⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ (31)

while varying the final time T. We start with the field Ẽ(0) in figure 2(a) from [17], but further
optimized using the error correction schemes of unitary D-MORPH. This starting field has
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Figure 3. Results of continuously varying T for a 2-qubit system, while holding U(T , 0; s) = I

to high precision. Panel (a) shows the initial field E0 which yields the identity transformation
at T = 200.05. Panel (b) shows the error as T is decreased as well as increased from 200.05
(indicated with an arrow). Panel (c) is the control field found by unitary D-MORPH that yields the
identity transformation at T (s) = 119.05, just before the error began increasing. Panel (d) is the
control field for T (s) = 450.05.

an initial terminal time of T (0) = 121.05, and we defined an exponential track for T by
specifying the derivative dT/ds(s) = −0.5 exp(−0.5s/T (0)), and a constant track for Q by
specifying B(s) ≡ 0 for all s. We then propagated s with step size 
s = 0.01, the fluence
minimizing free function, and ten additional error correction steps. Figure 2(b) indicates that
for decreasing T, the error (measured as the Hilbert–Schmidt norm ‖U(T , 0; s) − W‖) was
kept below 5 × 10−14 until T reached about 101, at which point the performance stopped.
Figure 2(c) represents the field at T = 101.7706 when the error was still 1.5943 × 10−14.
The most likely explanation for the catastrophic behavior near T = 101 is that the connected
component of the level set that D-MORPH was following, vanished, leaving D-MORPH far
away from any other field that can yield the CNOT gate (if, indeed, any such field exists for
this T).

The algorithm was then restarted in the same configuration, but with a linear track for
T, given by dT/ds = 0.5, in order to explore larger values of T. Figure 2(b) also shows the
error observed in this case of T > 121.05. Again, the algorithm was able to keep the error
below 5 × 10−14 for all T up to 245.55, at which point the algorithm was manually terminated.
The field at T = 245.55 is shown in figure 2(d) to be quite regular in structure and of lower
amplitude than in figure 2(a).
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Figure 4. Results of a run of 5000 individual random geodesic tracks on the 2-qubit system with
T = 200.05. Panel (a) shows the starting control field for the tracks. Panel (b) shows a histogram
of the maximum error encountered in the 100-step tracks. Panel (c) shows the error histogram at
the conclusion of each of the 5000 tracks.

8.1.2. Identity gate. This example uses the system described in (30), this time attempting
to generate the identity matrix over a continuous interval of times T. The starting field for
this exploration was found by taking the field at T = 200.05 from the CNOT example in
section 8.1.1 (this field is shown in figure 4(a)), and tracking it along a geodesic with fixed T to
get from CNOT to the identity. This procedure gave the starting field E0 shown in figure 3(a).
From this point, a decreasing linear track for T was defined, with dT/ds = −0.5. We then
propagated s with step size 
s = 0.01, the fluence minimizing free function, and ten additional
error correction steps. For T < 200.05, figure 3(b) indicates that the error (measured as the
Hilbert–Schmidt norm ‖U(T , 0; s)−I‖) was again maintained below 5×10−14 until T reached
about 119, at which point the performance could not be maintained as in the example of
figure 2. Figure 3(c) represents the field at T = 119.05 when the error was still 2.203×10−14.

The algorithm was also restarted in the same configuration, but with an increasing linear
track for T > 200.05, given by dT/ds = 0.5. Figure 3(b) shows the error observed in this
case. Again, the algorithm was able to keep the error below 5 × 10−14 for all T up to 450.05,
at which point the algorithm was manually terminated. The field at T = 450.05, shown in
figure 3(d), is quite regular with largely amplitude modulation.
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8.2. Exact-time controllability example

In this example, we take the fixed system in (30) and the fixed starting field E0 shown in
figure 4(a), which was found at T = 200.05 during the course of the CNOT example described
in section 8.1.1. Then 5000 random (Haar-distributed [18, 19]) special unitary matrices W

were generated from SU(4). For each of these matrices W , a geodesic track was defined
from the CNOT matrix generated by E0 to W as described in section 5.2. For each W , this
geodesic track was discretized into 100 steps and followed, while allowing ten additional error
correction steps between each s-step and using the fluence minimizing free function. The
histograms in figures 4(b) and (c) document the maximum error seen during the course of each
track, as well as the final error seen at the conclusion of the tracking procedure. It is evident
that very high accuracy is maintained both during the evolution and at the conclusion of each
track.

8.3. A remark on robustness

The numerical examples presented above employed the gradient of the fluence as the free
function. As a result, the scheme was not specifically directed to seek out solutions that are
robust to small perturbations (e.g., noise) in the control field. Indeed, post-facto analysis
of some of these solutions reveals that the quality of the results is very sensitive to even 1%
on-resonance Gaussian noise, bringing the error up from ∼10−14 to ∼0.05. This observation is
supported by the upper bound ‖dEVT (δE)‖ � (‖µ‖/h̄)‖δE‖1. It may be possible to avoid this
upper bound by changing the statement of the optimization problem. In unitary D-MORPH,
this could be accomplished by using the gradient of some robustness metric, rather than the
fluence, as the free function f in (20).

9. Conclusions

A new algorithm is presented for exploring the relationship between the control field E , the final
time T, and the resulting unitary propagator U(T , 0)[E] in quantum control. By developing the
algorithm around the geometry of the unitary and special unitary groups, a remarkable degree
of accuracy may be achieved in reaching target unitary transformations and in holding that
accuracy while the target time T is varied. This accuracy was demonstrated in two classes of
numerical examples. The first type explored the continuous changes necessary in the control
field to achieve a certain desired unitary transformation as the final time T was varied. And
the second class of example found families of controls for a fixed T as the target unitary
transformation was varied. The unitary D-MORPH algorithm enjoys a great deal of flexibility,
only some of which was exploited in the present paper. The basic framework can easily be
adapted to explore a variety of other questions in quantum control.
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Appendix. Differentiability with respect to the control

Standard theorems exist that prove the differentiability of the solution of a differential equation
with respect to parameters (or controls), however they traditionally assume that the vector field
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defining the flow varies smoothly with time. Since the space of admissible controls in this paper
(K) includes non-smooth functions, these theorems do not directly apply. For completeness,
this appendix proves that the unitary solution to Schrödinger’s equation VT (E) is infinitely
Fréchet differentiable with respect to the control, and gives an expression for the first derivative.
This result shows that the notion of smooth control landscapes over K is well defined.

It should be noted that, since H ∈ H may be discontinuous, a classical solution of the
differential form of the Schrödinger equation may not exist. However, a solution in the
sense of Carathéodory [20] exists and is unique for every H ∈ H, and this solution exists
for all t ∈ [0,∞) [1]. In other words, for each H ∈ H (or each E ∈ K), there exists
a unique absolutely continuous unitary path U(t, 0) for all t ∈ [0,∞), with U(0, 0) = I,
and such that almost everywhere on [0,∞), dU/dt exists and is equal to −(i/h̄)H(t)U(t, 0).
V : K × R+ → U(N) is therefore well defined on the entire domain in terms of these
Carathéodory solutions.

For the theorem that follows, we will need this fundamental inequality:

Lemma 1 (Gronwall’s inequality). Let ϕ,ψ, χ be real-valued measurable functions defined
on an interval [a, b] such that χ and χψ are integrable, and ∀t ∈ [a, b]

ϕ(t) � ψ(t) +
∫ t

a

χ(s)ϕ(s) ds. (A.1)

Then for all t ∈ [a, b],

ϕ(t) � ψ(t) +
∫ t

a

χ(s)ψ(s) exp

(∫ t

s

χ(u) du

)
ds. (A.2)

Proof. See [20, p 37]. �

Corollary 1. In the previous lemma, if ψ is a non-negative, non-decreasing function and χ is
non-negative, then

ϕ(t) � ψ(t) exp

(∫ t

a

χ(s) ds

)
. (A.3)

Proof. First, note that ψ(s) can be pulled out of the integral in (A.2), leaving

ϕ(t) � ψ(t)

(
1 +

∫ t

a

χ(s) exp

(∫ t

s

χ(u) du

)
ds

)
. (A.4)

Using integration by parts, one can show that∫ t

a

χ(s)

(∫ t

s

χ(u) du

)k

ds = 1

k + 1

(∫ t

a

χ(s) ds

)k+1

(A.5)

from which the result follows by the power series representation of exp. �

The arguments to be presented make much use of the topologies of various Hilbert and
Banach spaces, so we briefly summarize these topologies here. Although these spaces include
complex elements, they are all taken to be vector spaces over R, with real inner products in
the case of the Hilbert spaces. As was stated earlier, we take the real Hilbert–Schmidt inner
product 〈A,B〉 = Re Tr(A†B) for the topology on C

N×N and use this to induce the inner
product on M(N) and the Riemannian metric on U(N). L2(R+; R) is given the inner product
〈f, g〉2 = ∫ ∞

0 f (t)g(t) dt . L2(R+; C
N×N) is endowed with the inner product 〈A,B〉2 =∫ ∞

0 Re Tr(A†(t)B(t)) dt . L∞(R+; R) is given the norm ‖f ‖∞ = ess supt∈[0,∞) |f (t)|, i.e.
‖f ‖∞ is the smallest number such that |f (t)| � ‖f ‖∞ almost everywhere on [0,∞). We
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give L∞(R+; C
N×N) the norm ‖A‖∞ = ess supt∈[0,∞) ‖A(t)‖, where ‖A(t)‖ is the norm

defined by the real Hilbert–Schmidt inner product on C
N×N . Finally, we also make use of

induced operator norms. If X and Y are two Banach spaces and A is a linear operator from X
to Y, then we define ‖A‖ := sup‖x‖>0(‖Ax‖/‖x‖).

Definition 1. Let T = C(R+; C
N×N) be the space of continuous trajectories through C

N×N ,
where T is given the compact-open topology (i.e., the topology of uniform convergence on
compact sets).

Theorem 1. Suppose that Ĥ : K → H is differentiable, and is such that V̂ : K → T, defined
implicitly through the Schrödinger equation [V̂ (E)(t) = Vt(E)], is continuous. Then, for each
fixed T > 0, the map VT : K → C

N×N is differentiable, with Fréchet derivative

dEVT (δE) = − i

h̄
VT (E)

∫ T

0
V

†
t (E)(dEĤ(δE))(t)Vt (E) dt. (A.6)

Proof. This proof follows closely the proof of lemma 4.1.9 in [15]. Let

�(t, E, δE) := − i

h̄
Vt (E)

∫ t

0
V †

τ (E)(dEĤ(δE))(τ )Vτ (E) dτ. (A.7)

We wish to show that for any T > 0, and all E ∈ K,

lim
‖δE‖2→0

‖VT (E + δE) − VT (E) − �(T , E, δE)‖
‖δE‖2

= 0. (A.8)

To that end, observe first that VT (E) satisfies the integral form of Schrödinger’s equation:
VT (E) = I − (i/h̄)

∫ T

0 H(t, E)Vt (E) dt . In addition, since Vt(E) is absolutely continuous with

respect to t and V
†
t (E)(dEĤ(δE))(t)Vt (E) is locally bounded and measurable and therefore

integrable, �(t, E, δE) is also absolutely continuous in t and therefore differentiable with
respect to t almost everywhere. In fact,

d

dt
�(t, E, δE) = − i

h̄

(
d

dt
Vt (E)

)∫ t

0
V †

τ (E)(dEĤ(δE))(τ )Vτ (E) dτ

− i

h̄
Vt (E)V

†
t (E)(dEĤ(δE))(t)Vt (E) a.e.

=
(
− i

h̄

)2
Ht (E)Vt (E)

∫ t

0
V †

τ (E)(dEĤ(δE))(τ )Vτ (E) dτ

− i

h̄
(dEĤ(δE))(t)Vt (E) a.e.

= − i

h̄
Ht (E)�(t, E, δE) − i

h̄
(dEĤ(δE))(t)Vt (E) a.e. (A.9)

Therefore �(T , E, δE) satisfies the integral equation

�(T , E, δE) = − i

h̄

∫ T

0
[Ht (E)�(t, E, δE) + (dEĤ(δE))(t)Vt (E)] dt. (A.10)

Then

VT (E + δE) − VT (E) − �(T , E, δE) = − i

h̄

∫ T

0
Ht (E + δE)Vt (E + δE) − Ht (E)Vt (E) dt

+
i

h̄

∫ T

0
Ht (E)�(t, E, δE) + (dEĤ(δE))(t)Vt (E) dt (A.11)

15



J. Phys. A: Math. Theor. 41 (2008) 205305 J Dominy and H Rabitz

= − i

h̄

∫ T

0
[Ht (E + δE) − Ht (E) − (dEĤ(δE))(t)]Vt(E + δE) dt

− i

h̄

∫ T

0
(dEĤ(δE))(t)[Vt(E + δE) − Vt(E)] dt

− i

h̄

∫ T

0
Ht (E)[Vt(E + δE) − Vt(E) − �(t, E, δE)] dt. (A.12)

From this, we get the inequality

‖VT (E + δE) − VT (E) − �(T , E, δE)‖
� 1

h̄

∫ T

0
‖Ht (E + δE) − Ht (E) − (dEĤ(δE))(t)‖‖Vt(E + δE)‖ dt

+
1

h̄

∫ T

0
‖(dEĤ(δE))(t)‖‖Vt(E + δE) − Vt(E)‖ dt

+
1

h̄

∫ T

0
‖Ht (E)‖‖Vt(E + δE) − Vt(E) − �(t, E, δE)‖ dt (A.13)

= A(T , E, δE)

+
1

h̄

∫ T

0
‖Ht (E)‖‖Vt(E + δE) − Vt(E) − �(t, E, δE)‖ dt, (A.14)

where A(T , E, δE) encompasses the first two terms of (A.13). Now, since by assumption, for
each E ∈ K, ‖Ht (E)‖ is locally integrable, we can apply Gronwall’s inequality (Cor. 1) to
(A.14) for each fixed E, δE ∈ K to get

‖VT (E + δE) − VT (E) − �(T , E, δE)‖ � A(T , E, δE) exp

(
1

h̄

∫ T

0
‖Ht (E)‖ dt

)
, (A.15)

where exp
(

1
h̄

∫ T

0 ‖Ht (E)‖dt
)

is a finite number independent of δE .
It remains to show that A(T , E, δE)/‖δE‖2 → 0 as ‖δE‖2 → 0. Consider the first term

of A(T , E, δE). Since Vt(E) ∈ U(N) for all t � 0 and E ∈ K, ‖Vt(E + δE)‖ = √
N . Then

invoking the Cauchy–Schwarz inequality, we can show that

1

h̄

∫ T

0
‖Ht (E + δE) − Ht (E) − (dEĤ(δE))(t)‖‖Vt(E + δE)‖ dt

�
√

NT

h̄

(∫ T

0
‖Ht (E + δE) − Ht (E) − (dEĤ(δE))(t)‖2 dt

) 1
2

�
√

NT

h̄
‖Ĥ(E + δE) − Ĥ(E) − dEĤ(δE)‖. (A.16)

Now, for the second term of A(T , E, δE), note that since Ĥ is differentiable, dEĤ is a bounded
linear operator so that for each E ∈ K, ‖dEĤ‖ < ∞ and for every δE ∈ K, ‖dEĤ(δE)‖ �
‖dEĤ‖‖δE‖2. So by the Cauchy–Schwarz inequality we get

1

h̄

∫ T

0
‖(dEĤ(δE))(t)‖‖Vt(E + δE) − Vt(E)‖ dt

� 1

h̄

(∫ T

0
‖(dEĤ(δE))(t)‖2 dt

) 1
2
(∫ T

0
‖Vt(E + δE) − Vt(E)‖2 dt

) 1
2

� ‖dEĤ(δE)‖
h̄

(∫ T

0
‖Vt(E + δE) − Vt(E)‖2 dt

) 1
2
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� ‖dEĤ‖‖δE‖2

h̄

(∫ T

0
‖Vt(E + δE) − Vt(E)‖2 dt

) 1
2

. (A.17)

Therefore, we get

A(T , E, δE)

‖δE‖2
�

√
NT

h̄

‖Ĥ(E + δE) − Ĥ(E) − dEĤ(δE)‖
‖δE‖2

+
‖dEĤ‖

h̄

(∫ T

0
‖Vt(E + δE) − Vt(E)‖2 dt

) 1
2

. (A.18)

The first of these terms vanishes as ‖δE‖2 → 0 because of the differentiability of Ĥ.
And, because of the assumed continuity of the map V̂ : K → T and the compact-open
topology placed on T, as ‖δE‖2 → 0, supt∈[0,T ] ‖Vt(E + δE) − Vt(E)‖ → 0, so that( ∫ T

0 ‖Vt(E +δE)−Vt(E)‖2 dt
) 1

2 → 0. Therefore the second term also vanishes as ‖δE‖2 → 0,
so

lim
‖δE‖2→0

A(T , E, δE)

‖δE‖2
= 0 (A.19)

and the proof is complete. �

Corollary 2. If Ĥ is given by Ĥ(E) = H0 − µE for some fixed N × N Hermitian H0 and µ,
then VT is Fréchet differentiable and

dEVT (δE) = i

h̄
VT (E)

∫ T

0
V

†
t (E)µVt (E)δE(t) dt. (A.20)

Proof. It was proved in [1, 21] that the map V̂ : K → T is continuous for this form of the
Hamiltonian. In addition Ĥ is differentiable with dEĤ(δE) = −µδE . So theorem 1 applies
and gives the stated result. �

Henceforth in this appendix, we will assume for simplicity that Ĥ(E) = H0 − µE .

Definition 2. If X and Y are normed linear spaces, let Br (X;Y ) be the space of bounded
r-multilinear operators from Xr = X × X × . . . × X to Y, with the norm

‖A‖ = sup
{‖xj ‖�=0}

‖A(x1, . . . , xr )‖
‖x1‖ · · · ‖xr‖ (A.21)

for each A ∈ Br (X;Y ). Let B0(X;Y ) = Y . The arguments in this appendix will make
particular use of the spaces Br (K;L2([0, T ]; C

N×N)) and Br (K;L∞([0, T ]; C
N×N)). To

distinguish between these two norm topologies where it is not clear from the context, the norm
on Br (K;L2([0, T ]; C

N×N)) will be denoted ‖ ·‖2 and that on Br (K;L∞([0, T ]; C
N×N)) will

be denoted ‖ · ‖∞.

Definition 3. For any permutation π ∈ Sr (the symmetric group on r elements), let Pπ :
Br (X;Y ) → Br (X;Y ) be defined by Pπ (A)(x1, . . . , xr ) := A(xπ(1), . . . , xπ(r)) for any
A ∈ Br (X;Y ). For any π̂ ∈ ⊕∞

r=0 Sr , let P̂π̂ :
⊕∞

r=0 Br (X;Y ) → ⊕∞
r=0 Br (X;Y ) be

defined by (P̂π̂ (Â))r := Pπr
(Ar) ∈ Br (X;Y ), where πr and Ar are the rth ‘coordinates’ of π̂

and Â.

Lemma 2. Pπ is a bounded linear operator on Br (X;Y ) with operator norm ‖Pπ‖ = 1, for
any normed linear spaces X and Y.

Proof. ‖Pπ (A)‖ = sup{‖xj ‖�=0}
‖Pπ (A)(x1,...,xr )‖

‖x1‖···‖xr‖ = sup{‖xπ(j)‖�=0}
‖A(xπ(1),...,xπ(r))‖
‖xπ(1)‖···‖xπ(r)‖ = ‖A‖. �
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Definition 4. Fix T > 0. Let F be any space of integrable matrix-valued functions
F : [0, T ] → C

N×N , that is closed under indefinite integration, i.e. for any F ∈ X, the
function F̂ defined by F̂ (t) = ∫ t

0 F(t)dt also lies in F . Let IT : Br (K;F) → Br (K; C
N×N)

be the definite integral

IT (M)(δE1, . . . , δEr ) =
∫ T

0
M(δE1, . . . , δEr )(t) dt (A.22)

for any M ∈ Br (K;F) and let ÎT : Br (K;F) → Br (K;F) be the indefinite integral

ÎT (M)(δE1, . . . , δEr )(t) =
∫ t

0
M(δE1, . . . , δEr )(τ ) dτ ∀t ∈ [0, T ]. (A.23)

Lemma 3. IT and ÎT are bounded linear operators in the cases where the space F is
either L2([0, T ]; C

N×N) or L∞([0, T ]; C
N×N), hence IT and ÎT are continuous and Fréchet

differentiable and their derivatives are IT and ÎT , respectively. In addition, IT may be thought
of as a linear operator on Br (K,F) where the output is constant with respect to time, i.e.
IT (M)(δE1, . . . , δEr )(t) = ∫ T

0 M(δE1, . . . , δEr )(τ ) dτ for all t ∈ [0, T ]. In this context, and
for either choice of F, IT remains a bounded linear operator.

Definition 5. Denote by �T,r the vector space (over R) of Fréchet differentiable maps
B : K → Br (K;L2([0, T ]; C

N×N)) such that B(K) ⊂ Br (K;L∞([0, T ]; C
N×N)), and B is

continuous when considered as a map K → Br (K;L∞([0, T ]; C
N×N)). Let �T = ⊕∞

r=0 �T,r

be the direct sum of these spaces. On �T , define multiplication of elements B ∈ �T,r and
C ∈ �T,q by

(B · C)(E)(δE1, . . . , δEr+q)(t) = [B(E)(δE1, . . . , δEr )(t)][C(E)(δEr+1, . . . , δEr+q)(t)]

(A.24)

for all E ∈ K, {δEj } ⊂ K, and t ∈ [0, T ]. The Fréchet derivative of an element of �T will be
defined ‘grade-wise’. In other words, B ∈ �T may be thought of as a sequence B = {Bi} with
Bi ∈ �T,i , and dB is defined to be dB = {dBi}.

Lemma 4. With respect to this multiplication, �T,r · �T,q ⊂ �T,r+q and dE(B · C)(δE) =
(dEB(δE)) · C + B · (dEC(δE)), i.e. d(B · C) = (dB) · C + Pπ ◦ [B · (dC)] for some
π ∈ Sr+q+1. Hence, �T is a graded associative algebra of maps on which the usual product
rule applies. In addition ÎT ◦ �T ⊂ �T and IT ◦ �T ⊂ �T (where IT is regarded as a map
to Br (K;L2([0, T ]; C

N×N)) whose output is constant with respect to time), i.e. �T is closed
under both definite and indefinite time integration. Furthermore, each �T,r is closed with
respect to the permutation operations Pπ for all π ∈ Sr and �T is closed with respect to the
permutations P̂π̂ for all π̂ ∈ ⊕∞

r=0 Sr , i.e. Pπ ◦ �T,r = �T,r and P̂π̂ ◦ �T = �T .

Proof.

‖(B · C)(E)‖∞ = sup
‖δEj ‖�=0

ess sup
t∈[0,T ]

‖(B(E)(δE1, . . . , δEr )(t))(C(E)(δEr+1, δEr+q)(t))‖
‖δE1‖ · · · ‖δEr+q‖ (A.25)

� sup
‖δEj ‖�=0

ess sup
t∈[0,T ]

‖B(E)(δE1, . . . , δEr )(t)‖
‖δE1‖ · · · ‖δEr‖

‖C(E)(δEr+1, δEr+q)(t)‖
‖δEr+1‖ · · · ‖δEr+q‖ (A.26)

� ‖B(E)‖∞‖C(E)‖∞ < ∞, (A.27)
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so (B · C)(K) ⊂ Br+q(L∞([0, T ]; C
N×N)). For continuity with respect to the L∞ topology,

it may be shown that

‖(B · C)(E + δE) − (B · C)(E)‖∞ � ‖B(E + δE) − B(E)‖∞‖C(E + δE) − C(E)‖∞
+ ‖B(E + δE) − B(E)‖∞‖C(E)‖∞
+ ‖B(E)‖∞‖C(E + δE) − C(E)‖∞ (A.28)

→ 0 as ‖δE‖2 → 0 (A.29)

because by assumption, ‖B(E)‖∞ and ‖C(E)‖∞ are both bounded and B and C are both
continuous with respect to the L∞ topology on their codomains. Hence B · C is continous
with respect to the L∞ topology on its codomain.

For the differentiability of B · C, observe that

‖(B · C)(E + δE) − (B · C)(E) − (dEB(δE)) · C(E) − B(E) · (dEC(δE))‖2

‖δE‖2

� 1

‖δE‖2
(‖B(E + δE) − B(E) − dEB(δE)‖2‖C(E)‖∞

+ ‖B(E)‖∞‖C(E + δE) − C(E) − dEC(δE)‖2

+ ‖B(E + δE) − B(E) − dEB(δE)‖2‖C(E + δE) − C(E)‖∞
+ ‖dEB(δE)‖2‖C(E + δE) − C(E)‖∞) (A.30)

→ 0 as ‖δE‖2 → 0 (A.31)

since again by assumption, ‖B(E)‖∞ and ‖C(E)‖∞ are both finite and B and C are both
continuous with respect to the L∞ topology on their codomains, and differentiable with
respect to the L2 topology on their codomains. Hence B · C is differentiable with respect to
the L2 topology on its codomain, and we conclude that B · C ∈ �T .

Turning to closure with respect to time integration, let B ∈ �T,r for any r. Since
both ÎT and IT are bounded (hence continuous) on Br (K;L∞([0, T ]; C

N×N)) and B(K) ⊂
Br (K;L∞([0, T ]; C

N×N)), both ÎT ◦ B and IT ◦ B map into Br (K;L∞([0, T ]; C
N×N)).

Since B is continuous in the L∞ topology, ÎT ◦ B and IT ◦ B are continuous in the
L∞ topology. Finally, since ÎT and IT are linear and bounded (hence differentiable) on
Br (K;L2([0, T ]; C

N×N)) and B is differentiable in the L2 topology, ÎT ◦ B and IT ◦ B are
differentiable in the L2 topology. Hence ÎT ◦ B ∈ �T,r , IT ◦ B ∈ �T,r and �T,r is closed
with respect to both definite and indefinite time integration. Both ÎT and IT may be extended
by linearity over all of �T and �T is closed with respect to both definite and indefinite time
integration.

Finally, since Pπ is a bounded linear operator on both Br (K;L2([0, T ]; C
N×N)) and

Br (K;L∞([0, T ]; C
N×N)), the arguments used above for IT and ÎT apply here as well to

conclude that �T,r is closed with respect to permutations. It follows trivially that �T is closed
with respect to the permutations P̂π̂ for all π̂ ∈ ⊕∞

r=0 Sr . �

Lemma 5. Fix T > 0 and let V̂T : K → L2([0, T ]; C
N×N) be defined by V̂T (E)(t) = Vt(E)

for all E ∈ K and all t ∈ [0, T ]. Then V̂T ∈ �T,0 and dE V̂T (δE)(t) = dEVt(δE).

Proof. Since ‖V̂T (E)(t)‖ = √
N for all E ∈ K and all t ∈ [0, T ], it is clear that

V̂T (K) ⊂ L∞([0, T ]; C
N×N). In addition, it has been shown [1, 21] that V̂T is continuous

with respect to the L∞ topology on its codomain. Finally let dE V̂T (δE)(t) = dEVt(δE). Then,
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using (A.15),

‖V̂T (E + δE) − V̂T (E) − dE V̂T (δE)‖2

‖δE‖2
=

( ∫ T

0 ‖Vt(E + δE) − Vt(E) − dEVt(δE)‖2 dt
) 1

2

‖δE‖2

(A.32)

� T
A(T , E, δE)

‖δE‖2
exp

(
1

h̄

∫ T

0
‖Ht (E)‖ dt

)
(A.33)

→ 0 as ‖δE‖2 → 0 (A.34)

as in (A.19). It is easily verified that dE V̂T , defined in this way, is a bounded operator. Therefore
V̂T is differentiable with Fréchet derivative dE V̂T (δE)(t) = dEVt(δE), and V̂T ∈ �T,0. �

Lemma 6. Fix T > 0 and δE ∈ K. Let R : K → B1(K;L2([0, T ]; C
N×N)) be given by

R(E)(δE1)(t) := i

h̄
V

†
t (E)µVt(E)δE1(t) ∀ t ∈ [0, T ]. (A.35)

Then R ∈ �T,1 and dR = Pπ ◦ (R · (ĨT ◦R))− (ĨT ◦R) ·R, where π ∈ S2 is the transposition
(12) �→ (21). So the differential dR lies in �T,2.

Proof. First, observe that ϒ : K → B1(K;L2([0, T ]; C
N×N)) given by ϒ(E)(δE1) =

(i/h̄)µδE , is trivially a member of �T,1. Also, for any B ∈ �T , B† is also a member of �T ,
since the matrix adjoint operation (†) is linear (because C

N×N is taken to be a vector space
over R) and bounded in both the L2 and L∞ topologies. In addition, R = V̂

†
T · ϒ · V̂T is a

product of elements of �T and therefore itself lies in �T . In particular, it lies in �T,1.
Furthermore, by the product rule on �T and the fact that dϒ = 0,

dR = (
dV̂

†
T

) · ϒ · V̂T + P(21) ◦ [
V̂

†
T · ϒ · (dV̂T )

]
(A.36)

= [−(ÎT ◦ R) · V̂
†
T

] · ϒ · V̂T + P(21) ◦ (
V̂

†
T · ϒ · [V̂T · (ÎT ◦ R)]

)
(A.37)

= −(ÎT ◦ R) · R + P(21) ◦ [R · (ÎT ◦ R)]. (A.38)
�

Definition 6. Let A0 be the subalgebra of �T generated by R and closed under permutation.
For k = 1, 2, . . . , let Ak be the subalgebra of �T generated by Ak−1

⋃
(IT ◦ Ak−1)

⋃
(ÎT ◦

Ak−1) and closed under permutation. These {Ak} form a nested sequence of algebras. Let
�T = ⋃

Ak .

Lemma 7. For each B ∈ Ak the Fréchet derivative dB lies in Ak+1. Hence �T is a subalgebra
of �T , closed with respect to IT , ÎT , permutations P̂π̂ , and differentiation by the control E .
As a consequence, each element of �T is infinitely Fréchet differentiable.

Proof. Note first that any B in A0 is a finite linear combination of permutations of finite
powers of R. The Fréchet differential of B will then be a finite linear combination of terms like

J∑
j=1

Pπj
◦ (Rj−1 · dR · RJ−j ) =

J∑
j=1

Pπj
◦ (R · · · R · dR · R · · · R). (A.39)

By lemma 6, dR = Pπ ◦ (R · (ĨT ◦ R)) − (ĨT ◦ R) · R which lies in A1. Since R also lies
in A1, dB is a finite linear combination of permutations of finite products of terms in A1 and
therefore itself lies in A1.

Now suppose for each B ∈ Ak−1 that dB lies in Ak . Let C be an arbitrary element of Ak .
As such, it is a finite linear combination of permutations of finite products of the generators
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in Ak−1 ∪ IT ◦ Ak−1 ∪ ÎT ◦ Ak−1. The Fréchet derivatives of any element in Ak−1 lies in
Ak by assumption, and the derivatives of any element in IT ◦ Ak−1 or ÎT ◦ Ak−1 will lie in
IT ◦ Ak or ÎT ◦ Ak , respectively. Hence the Fréchet derivative of any of these generators will
lie in Ak+1, as do all of the generators themselves. So the derivative of C will be a finite linear
combination of finite products of elements of Ak+1, and therefore the derivative itself lies in
Ak+1. The lemma follows by induction. �

Theorem 2. If Ĥ is given by Ĥ(E) = H0 − µE for some fixed N × N Hermitian H0 and µ,
then VT is infinitely Fréchet differentiable (i.e. C∞).

Proof. The differential of VT is given by dVT = VT · (IT ◦ R). Given any map
F = VT · (IT ◦ B) for any B ∈ �T , F is differentiable with Fréchet derivative dF =
P̂π̂ ◦ [dVT · (IT ◦B)] + VT · (IT ◦ dB) for some permutation P̂π̂ . Permutation commutes with
both integration and with VT (since VT ∈ �T,0), hence the differential of F may be written
dF = VT · (IT ◦C) where C = Pπ1 ◦ [(IT ◦R) ·B]+dB is again an element of �T . Therefore,
each derivative of F is of the form VT · (IT ◦ C) for some C ∈ �T , and so each such F
is infinitely Fréchet differentiable. In particular, dVT = VT · (IT ◦ R) is of this form since
R ∈ �T . Hence, VT is infinitely Fréchet differentiable. �
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